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Società Italiana di Fisica
Springer-Verlag 2000

On the evaluation of the specific heat and general off-diagonal
n-point correlation functions within the loop algorithm

J.V. Alvarez and Claudius Grosa

Fachbereich Physik, Universität des Saarlandes, Postfach 151150, 66041 Saarbrücken, Germany

Recieved 10 January 2000 and Received in final form 9 February 2000

Abstract. We present an efficient way to compute diagonal and off-diagonal n-point correlation functions
for quantum spin-systems within the loop algorithm. We show that the general rules for the evaluation of
these correlation functions take an especially simple form within the framework of directed loops. These
rules state that contributing loops have to close coherently. As an application we evaluate the specific heat
for the case of spin chains and ladders.

PACS. 75.40.Cx Static properties (order parameter, static susceptibility, heat capacities, critical
exponents, etc.) – 75.40.Mg Numerical simulation studies

1 Introduction

Numerical investigations of strongly correlated electron
systems [1] gained considerable importance in the last
decade. The evaluation of non-diagonal correlation func-
tion and dynamical response function plays a major role
in the context of correlated electron systems [1,2]. On
the other hand, there are only very few investigations
of non-diagonal and/or higher-order correlation function
in the context of quantum spin-systems. Indeed, it has
been realized only recently, that non-diagonal correlation
function might be calculated efficiently within the loop-
algorithm [3]. The loop-algorithm [4] has established itself
as the method of choice for quantum-Monte Carlo (MC)
simulations of non-frustrated quantum spin systems.

The key observation here is the fact, that local up-
dating dynamics in a MC simulation creates strongly cor-
related configurations for gapless quantum spin systems
at low temperatures. Since the samples are then not sta-
tistically independent, the statistical error bars do decay
only very slowly with the number of samples. One way to
state this problem is to say, that the autocorrelation time
τauto for the samples of spin-configurations created with
the MC-walk increases (in generally exponentially) at low
temperatures.

Most efficient MC procedures implement consequently
global update dynamics. Examples of these procedures
are the clusters algorithms [6]. Designed to circumvent
the critical slowing down, these methods have been in-
tensively used to study classical statistical systems near
critical points, where the problem of large τauto is very
severe.
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The loop algorithm [4] can be considered as a general-
ization of classical clusters algorithms to quantum models.
In fact, it gives a prescription on how global updates can
be performed in quantum systems. As we will see this
prescription lays on the geometric interpretation of the
transformation from a quantum system to a statistical
model of oriented loops. The MC procedure can be imple-
mented then directly on the loops. It has the advantage
that the updating dynamics defined on the loops gener-
ates statistically nearly independent configurations. The
autocorrelation time is therefore about just MC step and
the corresponding operators can be measured at every MC
step avoiding both “waiting times” and substantial incre-
ments of the variance (statistical error bars).

In addition, a loop has another remarkable property;
starting from an allowed spin configuration, constructing
a loop and then flipping all spins in one loop (flipping
the orientation of the loop) one obtains a new allowed
configuration. This observation allows to compute the ex-
pectation value of operators not only in one configuration
per MC step but in all configuration related to it by flip-
ping any number of given loops. This procedure is usually
called improved estimator [3].

The purpose of this work is to extend the algorithm to
the computation of higher order (and non-diagonal) cor-
relations functions. As we will see it involves dealing with
two or more loop contributions. In particular we will focus
on the specific heat cV , which, in the past, has been con-
sidered a major challenge for Monte-Carlo simulations [7].
We will show, that the direct evaluation of the higher-
order (non-diagonal) correlation functions contributing to
cV allows for improved estimators and such to gain one or-
der of magnitude in computational efficiency. The method
that we presented is valid in any dimension.
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2 The loop algorithm

A nice review of the loop algorithm can be found in refer-
ence [5]. Here we start with a short introduction in order
to introduce the notation used further on for the evalua-
tion of higher-order correlation functions.

The loop algorithm is most easily understood in the
checkerboard picture for a discrete number of Trotter
slices NT; the generalization to continuous Trotter time [8]
is straightforward. This picture, which is based on the
Suzuki-Trotter decomposition, describes in a graphical
way how the interacting spin system wave function evolves
in discrete imaginary time.

The Suzuki-Trotter formula [9] maps a quantum spin
system in dimension d onto a classical spin in dimension
d+ 1. The partition function of the original quantum spin
model is hereby written in terms of the trace of a product
of transfer matrices defined in the classical model.

To illustrate the method we consider an inhomoge-
neous one-dimensional XXZ model H = H1 + H2 on a
bipartite chain of length L:

H1 =
∑
i=2m

Hi, H2 =
∑

j=2m+1

Hj

Hi = −J
XY
i

2
(
S+
i S
−
i+1 + S−i S

+
i+1

)
+ JZi S

Z
i S

Z
i+1 ,

where the sign of the term ∼ JXYi has been choose to
be negative by an appropriate rotation of the spins on
one of the two sublattices. This is always possible on a
bipartite lattice and allows for positive transfer matrix el-
ements (absence of the sign problem). The decomposition
H = H1 + H2 allows for the use of Totter-Suzuki for-
mula [9] for the representation of the partition function

Z = Tr
[
exp(− β

NT
H)
]NT

,

Z = Tr
NT∏
n=1

∑
αn

〈φ(n)
αn |

× exp(−∆τH1) exp(−∆τH2)|φ(n+1)
αn+1

〉+O(∆τ2) ,

where ∆τ = β/NT. Here we have introduced representa-
tions of the unity operator

∑
αn
|φ(n)
αn 〉〈φ(n)

αn | in between
any of the NT imaginary time slices.

Since H1 and H2 are sum of local operators that com-
mute with each other, we may write the wave function as
the product of the local basis in say z-component of spin,
|φ(n)
αn 〉 = ⊗i|σi〉, with σi =↑, ↓.

In the checkerboard lattice the interaction between two
consecutive pairs of spins is graphically denoted by shaded
plaquettes (see Fig. 1). There are two spins interacting
per plaquette so a 4× 4 transfer matrix Ti can be defined
in each plaquette, which depends only one the coupling
constants.

α

αφ

φ (n)

(n+1)

Fig. 1. Illustration of a plaquette with a spin flip process which
corresponds to the matrix element 〈↑↓ | exp(−∆τH)| ↓↑〉 of the
transfer matrix.

For the XXZ-model the transfer matrix Ti is in the
basis (| ↑, ↑〉, | ↑, ↓〉, | ↓, ↑〉, | ↓, ↓〉):

Ti = e
∆τJzi

4

×

0
BBBBB@

exp(−∆τJ
Z
i

2 ) 0 0 0

0 cosh(
∆τJXYi

2 ) sinh(
∆τJXYi

2 ) 0

0 sinh(
∆τJXYi

2
) cosh(

∆τJXYi
2

) 0

0 0 0 exp(−∆τJ
Z
i

2 )

1
CCCCCA
.

The partition function Z is then, up to terms order
O(∆τ2), the trace of a product of transfer matrices:

Z = Tr [exp(−βH)]

= Tr
NT∏
n=1

(⊗
i=2m

Ti

) ⊗
j=2m+1

Tj

 .

As a next step beyond this standard representation of
d-dimensional quantum models in terms of classical sta-
tistical systems [10] we expanded the transfer matrices
Ti =

∑
γ p

(γ)
i M (γ) in terms of certain matrices M (γ) such

that the weight p(γ)
i ≥ 0 are non-negative. This is, in

general, not possible for all models. For the XXZ with
JXYi ≥ JZi we can choose:

M (1) =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 , M (2) =


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 ,

M (3) =


0 0 0 0
0 1 1 0
0 1 1 0
0 0 0 0

 ,
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Fig. 2. Evolution of worldlines of up and down spins in imag-
inary time. Periodic boundary conditions are assumed in both
space and imaginary time. Note that we define worldlines for
both up- and down-spins, which differ by the direction in imag-
inary time.

where

p
(1)
i =

1
2

(exp(−∆τJzi /2)

+ exp(−∆τJXYi /2)) exp(∆τJZi /4),

p
(2)
i =

1
2

(exp(−∆τJzi /2)

− exp(−∆τJXYi /2)) exp(∆τJZi /4)

and

p
(3)
i =

1
2

(− exp(−∆τJzi /2)

+ exp(∆τJXYi /2)) exp(∆τJZi /4).

We then obtain for the partition function

Z = Tr
NT∏
n=1

⊗
i=2m

(∑
γ

p
(γ)
i M (γ)

) ⊗
j=2m+1

(∑
γ

p
(γ)
j M (γ)

)
.

(1)

Equation (1) can be interpreted in a geometrical way (see
Fig. 2). In the checkerboard picture the M (γ) matrices
can be understood as different ways in which the world-
lines can be broken in every plaquette and are usually
called breakups. By taking one breakup per every plaque-
tte we force the worldlines into closed paths which we call
directed loops (see Fig. 3). A directed loop therefore fol-
lows the worldline of an up-spin when it evolves in positive
Trotter-time direction and the world-line of a down-spin
when it evolves in negative Trotter-time direction.

In Figure 3 we show the graphic representation of the
breakups M (γ). The lines now represent the directed loop
segments.

Equation (1) states that the partition function can be
obtained as a sum over all breakups. As a sum over all
breakups is equivalent to a sum over all loop configurations
{l} we may rewrite equation (1) as

Z =
∑
{l}

ρ({l}) Tr
NT∏
n=1

⊗
i=2m

M (γi)
⊗

j=2m+1

M (γj) , (2)

Fig. 3. Illustration of loop breakups, the directed lines repre-
sent the loop segments. From left to right the vertical (M (1)),
diagonal (M (2)) and the horizontal breakup (M (3)) are shown.

where ρ({l}) =
∏
i p

(γi)
i

∏
j p

(γj)
j . Equation (2) leads to a

very efficient MC-algorithm [4]: (a) Choose loop-breakups
M (γi) with probabilities p(γi)

i . (b) Construct the loop con-
figuration {l} and flip all loops with probability 1/2. (c)
Measure any desired operator in all 2NL({l}) spin config-
urations reachable with independent loop flips (improved
estimators), where NL({l}) is the number of loops in the
loop configuration {l}.

For later use we rewrite equation (2) in a form of
traces over individual loops. Noting that vertical and di-
agonal loop segments do not change the spin-direction
(see Fig. 3), we may associate the 2 × 2 identity matrix
σ0 =

 
1 0
0 1

!
with vertical and diagonal loop segments. As

horizontal loop segments do change the spin-direction, we
associate the Pauli-matrix σx =

 
0 1
1 0

!
with them. We then

may rewrite equation (2) as

Z =
∑
{l}

ρ({l})
∏
l∈{l}

Trl
∏
µ

σγµ , (3)

where µ is an index running over loop l and γµ = 0, x.
Trl denotes the trace over loop l. Since Trl

∏
µ σ

γµ = 2,
equation (3) is equivalent to a statistical mechanical model
of oriented loops, Z =

∑
{l} ρ({l}) 2NL({l}).

3 Correlation functions, improved estimators

The expectation value of an operator O is

〈O〉 = Tr(O exp(−βH))

=
∑
α,β

〈φα|O|φβ〉〈φβ | exp(−βH)|φα〉 (4)

If O is diagonal in the basis {|φα〉} then this procedure
is straightforward. The updating procedure generates a
sequence of configurations ciMC (iMC = 1 . . .NMC), ac-
cording with the distribution function of the system. In
these configurations O takes a well defined value O(ciMC),
therefore:

〈O〉 =
1

NMC

∑
iMC

O(ciMC). (5)
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Fig. 4. Summing over all possible loop orientations, the two-
loop contributions cancel each other for SzxS

z
y. Only when the

two spin-operators act on the same loop we get a non-vanishing
contribution.

S S
+-

S S
+-

Fig. 5. The action of S−x S
+
y can be represented as the insertion

of a new kind of plaquette, here depicted in black, which acts on
two loop segments. This operator flips the spins and changes
therefore the orientation of the two loops for the remaining
segments. Left-picture: The arrows denote the spin-direction.
Right-picture: The arrows denote the direction of the loops.

The loop algorithm allows to measure an operator not
only in ciMC but in all configurations related by loop flip-
pings. We illustrate the use of these improved estimators
by computing O = SzxS

z
y (here indices x and y label both

space and Trotter time (see Fig. 4). When x and y belong
to different loops the orientation can be changed indepen-
dently and the total contribution cancels. By the contrary
when x and y are on the same loop the orientations of the
loop in both sites are linked and these terms contribute
for the two possible orientations of the loop.

We will consider now the problem of non diagonal op-
erators. The expectation value of a non diagonal operator
O′ in the loop picture is, see equation (2):

〈O′〉 =
∑
{l}

ρ({l}) TrT

O′ NT∏
n=1

⊗
i

M (γi)
⊗
j

M (γj)

 ,

(6)

where T () means proper imaginary time ordering. Let us
take as an example the two-point correlator O′ = S+

x S
−
y .

Graphically the evaluation of an operator can be inter-
preted on the checkerboard framework as the insertion of
a new kind of plaquette. In Figure 5 we show the action of
that operator in the checkerboard picture. We note that
an off-diagonal operator in general reverses the direction

S
-

S
-

 S
+S

+

Fig. 6. If S+
x and S−y operate on different loops none of them

can be closed consistently in terms of loop orientation, repre-
sented here by arrows. When both operators act on the same
loop that configuration contributes to 〈S+

x S
−
y 〉.

of one or more loops. The loop configurations generated by
the MC updating-procedure does, on the other hand, only
generate loops with well defined loop orientations. Never-
theless there is a close connection between these two types
of configurations which is easy to understand in graphical
terms.

In Figure 5 it is shown how the flipping of one spin
‘propagates’ through the loop, changing the orientation
of the loop from that point. Thinking in terms of oriented
loops it is obvious that with only one of these flipping pro-
cesses (S+

x or S−y ) per loop, it is not possible to close the
loop consistently. To reestablish the original loop orienta-
tion it is necessary to have an even number of properly
ordered S− or S+ operators on the same loop to close
it consistently in terms of loop orientation variables. A
loop which is not properly closed does not contribute to
〈O′〉. Then we can establish that for a two-point correla-
tion function we only obtain a contribution when x and y
belong to the same loop (see Fig. 6). Equation (4) could
suggest that measurements of non diagonal operators con-
sume more computing time than diagonal operators, but
using this graphical picture we note that both computa-
tions can be implemented in an equivalent way.

These ideas can be justified in formal terms using equa-
tions (3, 6). The S+

x and S−y operators are placed in be-
tween of two σγ matrices belonging to neighboring pla-
quettes and traces can be taken again independently in
each loop. We define the 2 × 2 matrices σ+ =

 
0 1
0 0

!
and

σ− =
 

0 0
1 0

!
. For positive loop-direction (with respect to

the Trotter direction) S+ is equivalent to σ+, for a di-
rected loop segment with negative loop-direction S+ is
equivalent to σ−. For S− it is just the other way round.
The loop direction of relevance here is the one before the
insertion of either a S+ or a S− operator.

We start considering contributions to 〈S+
x S
−
y 〉 where

the loop-direction at site x is up and down at site y (see
Fig. 6). The expectation value of the non-diagonal opera-
tor S+

x S
−
y then becomes (compare Eq. (3))

〈S+
x S
−
y 〉 →

1
Z

∑
{l}

ρ({l})T

σ+
x σ

+
y

∏
l∈{l}

Trl
∏
µ

σγµ

 .

(7)

Here T means proper time and space ordering. When σ+
x

and σ+
y are placed in different loops, the traces taken

in these two loops cancel. If they are in the same loop
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the trace taken in that loop equals 1 (and not 2), inde-
pendently of the spin-configuration. We will prove this last
point now. We start by writing the partial trace of the loop
containing σ+

x and σ−y as

T (++) = Trl σ+
x (σx)z1 σ+

y (σx)z2 ,

where we neglected the σ0 matrices, as they are just the
identity matrices. We note that z1 + z2 is even since
(σx)2 = σ0 and because we are considering a loop which
did contribute to the partition function Z before the
S+

x S
−
y operators were inserted. The σx matrix corresponds

to a horizontal loop segment and such to a change in loop
direction. z1 needs therefore to be odd (and therefore also
z2), since one needs an odd number of directional inver-
sions to arrive to a negative loop direction at site y, start-
ing from a positive direction at site x. We may therefore
rewrite T (++) (using again (σx)2 = σ0) as

T (++) = Trl σ+
x σ

xσ+
y σ

x ≡ 1,

as one can easily evaluate. Similarly one can consider the
case when the initial loop directions are both positive at
sites x and y. The expectation value of the non-diagonal
operator S+

x S
−
y becomes then in this case

〈S+
x S
−
y 〉 →

1
Z

∑
{l}

ρ({l})T

σ+
x σ
−
y

∏
l∈{l}

Trl
∏
µ

σγµ

 .

(8)

The corresponding one-loop contributions then have the
form

T (+−) = Trl σ+
x (σx)z1 σ−y (σx)z2 = Trl σ+

x σ
−
y ≡ 1 ,

since both z1 and z2 have to be even in this case. Sim-
ilarly one can consider the two remaining cases of loop
directions down/up and down/down at the sites x and y.
It is worthwhile noting, that one easily proves along these
lines the expected result 〈S+

x S
+
y 〉 = 0.

4 General case n-point correlation functions

In the last section we have shown how the loop orientation
is the fundamental variable to deal with the computation
of correlation functions using improved estimators. In fact
the problem of n-point correlation functions can also be re-
duced to the study of how the loop orientation is changed
by the action of some operators.

We illustrate the case of two-loop terms for the four-
point correlation function O′′ = S+

x S
−
y S

+
x′S
−
y′ . Here we

consider the case relevant for the specific heat were (x,y)
and (x′,y′) are pairs of real-space nearest neighbor (n.n.)
sites at the same Trotter time. This operator can generate
several different kinds of contributions. The first one is
the case of two disconnected one-loop contributions (see
Fig. 7). This is the case if S+

x and S−y act in one loop and

S S
SS

- +
- +

Fig. 7. Schematic example of two disconnected one-loop con-
tributions to 〈O′′〉. The dotted line in between two operators
illustrates the case of two operators at the same Trotter time.

S

S

S

S

-

-+

+

Fig. 8. Schematic example of connected two-loop contribution.
Two n.n. operators at the same Trotter time are connected with
a dotted line.

S+
x′ and S−y′ in a second loop. A second contribution arises

if S+
x and S−y′ act in one loop and S−y and S+

x′ in a second
loop (see Fig. 8). We call this contribution a connected
two-loop contribution. A third contribution arises when
all four sites act on the same loop.

The evaluation of a single off-diagonal four-point op-
erator O′′ does not pose a problem within the loop al-
gorithm. For the case of interest, the specific heat a few
additional points need to be kept in mind. The specific
heat cV is given by

cV =

β2

LN2
T

∑
x,x′

〈 (Sx · Sy)(Sx′ · Sy′) 〉 −
(∑

x

〈Sx · Sy〉
)2
 ,
(9)

where, again, (x,y) and (x′,y′) are pairs of (real-space)
n.n. sites on the Trotter lattice. The first term of equa-
tion (9) is a local energy-energy correlation function.
When, x and y belong to a loop and x′ and y′ to another,
we generate two-loop disconnected terms (as the one illus-
trated in Fig. 7) that can be computed from the expecta-
tion value of the internal energy, the second term of spe-
cific heat. The energy in a given MC-configuration, EiMC ,
can be written as a sum of the energy in the NL(iMC)
loops in this MC-configuration:

EiMC =
NL(iMC)∑
l=1

EliMC
.
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Fig. 9. On the left we show an example of non-contributing
configuration to the specific heat. The loop orientation is ill
defined and therefore this configuration does not contribute.
On the right we see a contributing one-loop configuration.

With this definition we obtain

c
(ind)
V =

1
NMC

∑
iMC

∑
l6=k

EliMC
EkiMC

=
1

NMC

∑
iMC

(∑
l

EliMC

)2

−
∑
l

(
EliMC

)2 ,
where cV = c

(conn)
V + c

(ind)
V . For the evaluation of the con-

nected term c
(conn)
V one has to evaluate the off-site terms,

c
(off)
V , where the pairs (x,y) and (x′,y′) are disjunct, sep-

arately from the on-site terms, c(on)
V , where they are not

disjunct: c(conn)
V = c

(off)
V +c(on)

V . By spin-algebra the on-site
terms reduce to general two-point correlation functions.
The (connected) off-site contributions fall in three cate-
gories, depending on the number Sz operators involved
(four, two or zero). The contributions with four Sz opera-
tors have one and two loop contributions. A connected
term with two Sz operators has no two-loop contribu-
tion. Every correlation with two Sz operators has the form
SzxS

z
yS

+
x′S
−
y′ . If the indices x and y are not in the same loop

the two Sz operators act in different loops and their traces
cancel for the reason explained in Section 3. The same rea-
soning is valid for x′ and y′ with the operators S+ and
S−. Finally, terms with no Sz operators can have two loop
contributions (see Fig. 8) and also one-loop contributions
when the S+ and S− are properly ordered along the loop
to close the loop coherently in terms of loop orientation.
On the left of Figure 9 we see that an arbitrary insertion
of the operators S+ and S− can produce a conflict on the
orientation of the loop. Technically, the value of the trace
taken along the loop will depend on the structure of the
correlator. This structure determines the order of the in-
sertion of the σ+ and σ− matrices. For example the trace
along the loop on the left of Figure 9 is:

Tr(σ−x σ
xσ−x′σ

−
y σ

xσ+
y′) = 0.

For the loop on the right of Figure 9 it is:

Tr(σ−x σ
xσ−y σ

+
x′σ

xσ+
y′) = 1.

It is possible to evaluate certain off-diagonal operators O
by an alternative method. The condition is, that the op-
erator can be expressed by a sum of local operators which

φ

φ

φ

 

α

β

α
(n)

(n+1)

Fig. 10. New structure of the plaquette in the reweight-
ing method. The grey plaquette is the conventional plaquette
where the evolution in imaginary time takes place, the black
plaquette represents the operator O on the basis of σz. The
product of the two matrices generates a new composite pla-
quette where the new weight is defined.

do involve the same pairs of sites 〈l, l′〉 as the Hamilton-
operatorH =

∑
〈l,l′〉Hl,l′ : O =

∑
〈l,l′〉Ol,l′ . It is then pos-

sible to compute 〈O〉 by a reweighting method. The idea
is to extend the plaquette of the checkerboard representa-
tion by new internal degrees of freedom,

∑
β |φβ〉〈φβ | (see

Fig. 10). The reweighted matrix element of 〈Ox,x′〉 is then

O(n)
αn,αn+1

(x, x′) =∑
β

〈φ(n)
αn |Ox,x′ |φβ〉 〈φβ | exp(−∆τHx,x′)|φ(n+1)

αn+1 〉
〈φ(n)
αn | exp(−∆τHx,x′)|φ(n+1)

αn+1 〉
, (10)

where x and x′ denote combined space-time indices.
For a given spin-configuration ciMC = {φ(n)

αn |(n =
1, . . . , NT)} the off-diagonal expectation value of O(ciMC)
is O(ciMC) = 1/NT

∑
〈x,x′〉,(n)O

(n)
αn,αn+1(x, x′) and 〈O〉 =

1/NMC

∑
iMC
O(ciMC ) (see Eq. (5)).

The reweighting method may also be applied to spe-
cific heat, which is the sum of products of local operators.

From the point of view of the complexity of the algo-
rithm, measuring four-point correlation functions requires
more computing time than two-point correlation func-
tions. For the latter is only necessary to know whether or
not two sites are in the same loop. This information can
be obtained at the same time the loop is constructed and
consequently the computing time remains proportional to
LNT. For n-point correlation functions the situation is
more complex. In this case, there are contributions involv-
ing two or more loops and at the same time non-diagonal
operators give different contributions depending on how
they are ordered on the loop. In practice this depends
on the shape of the loops in each configuration. A rigor-
ous study of the performance of the method must include
an analysis of the behavior of the statistical errors as a
function of the temperature, size, number and type of op-
erator involved in the correlation functions and the details
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Fig. 11. Specific heat for the Heisenberg model in the 8-site
chain with J = 2, as a function of temperature in units of J .
The two sets of data correspond to the QMC simulations with
improved estimators (open squares) and with the reweighting
method (filled triangles), for the same number of QMC steps.
The solid line is the exact diagonalization data.

of the Hamiltonian. This detailed analysis of technical as-
pects of n-point correlations will be presented elsewhere.

5 Results

As an application of the rules explained in this paper we
have computed the specific heat for a Heisenberg chain
and for a ladder with J⊥ = 0.5J (which corresponds to
the ratio for the ladder-compound Sr14Cu24O41 [12]).

In Figure 11 we compare exact diagonalization results
with the results using the method described above and
the reweighting method for the same number of MC steps.
The error bars in these two methods are also compared.
For the lowest temperature the error bar with improved
estimators are 6 times smaller. Taking into account that
error bars decay as 1√

NMC
we expect that without using

improved estimators 36 times more MC steps are neces-
sary to get equal size error bars. The statistical errors are
amplified by the factor β2. This factor and the substrac-
tion of similarly large numbers lead to large error bars at
low temperatures.

In Figure 12 we present results for the specific heat
of a 100-site Heisenberg chain. To reproduce the linear
regime at low temperatures it is necessary to perform a
careful extrapolation to ∆τ → 0 taking half a million of
MC steps for each ∆τ values and 10 different NT values
ranging from 20 to 200.

In Figure 13 we present results for the two-leg ladder
of 2 × 201 sites with twisted boundary conditions (i.e.
for J⊥ = 0 this system corresponds to a L = 402-site
Heisenberg chain).
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Fig. 12. Specific heat for a 100 sites Heisenberg with J = 2.0
chain using improved estimators, as a function of temperature,
in units of J . The error-bars are smaller than the symbol sizes.
The solid line is the exact Bethe-Ansatz result for the infinite-
chain [11].
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Fig. 13. Specific heat for the 2 × 201 ladder with twisted
boundary conditions as a function of temperature in units of
J . The values of the couplings are J = 1.0 and J⊥ = 0.5J .

6 Conclusions

We have presented detailed rules on how to evaluate gen-
eral, off-diagonal n-point Green functions within the loop
algorithm. These rules have a very simple interpretation
in the picture of oriented loops. They state that the loop-
orientation has to close coherently whenever a certain
number of non-diagonal operators are inserted. We have
shown how to apply these rules to the case of the specific
heat and presented results for the 1D-Heisenberg model
and a ladder system.
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port of the German Science Foundation. We acknowledge the
hospitality of the ITP in Santa Barbara. This research was sup-
ported by the National Science Foundation under Grant No.
PHY94-07194.

References

1. See for instance E. Dagotto, Rev. Mod. Phys. 66, 763
(1994) and references therein.

2. J.E. Hirsch, R.M. Fye, Phys. Rev. Lett. 56, 2521 (1986).
3. R. Brower, S. Chandrasekaran, U.-J. Wiese, Physica A

261, 520 (1998).

4. H.G. Evertz, G. Lana, M. Marcu, Phys. Rev. Lett. 70, 875
(1993).

5. H.G. Evertz, in Numerical Methods for Lattice Quantum
Many-Body Problems, edited by D.J. Scalapino (Addison
Wesley Longman, Perseus Books, Frontiers in Physics,
2000).

6. R.H. Swendsen, J.S. Wang, Phys. Rev. Lett. 58, 86 (1987);
U. Wolff, Phys. Rev. Lett. 62, 361 (1989).

7. C. Huscroft, R. Gass, M. Jarrell, Phys. Rev. B 61, 9300
(2000); R. Fey, R. Scalettar, Phys. Rev. B 36, 3833 (1987).

8. B.B. Beard, U.-J. Wiese, Phys. Rev. Lett. 77, 5130 (1996).
9. H.F. Trotter, Proc. Am. Math. Soc. 10, 545 (1959); M.

Suzuki, Prog. Theor. Phys. 56, 1454 (1976).
10. B.B. Beard, U.-J. Wiese, Phys. Rev. Lett. 77, 5130 (1996).
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